CBC Virtual Seminar Series

Professor Ken Sakai
Kyushu University, Japan

Catalysis of Transition Metal Complexes in Water Splitting and CO₂ Reduction: Improved Understanding in the Reaction Pathways

Since the initial discovery in 1987 (J. Coord. Chem. 1988, 18, 169) in the catalytic activity of platinum(II) compounds in hydrogen evolution reaction (HER), continued efforts have been made to gain deeper understanding in the mechanism of molecular catalysis by various transition metal compounds in some important energy related catalytic reactions such as HER, OER (oxygen evolution reaction), and carbon dioxide reduction (CDR). For the reduction side of catalysis (HER and CDR), the manner how we utilize/tune either the electron density or basicity at the filled d orbital exposed at the reaction center plays a key role in promoting the protonation or CO₂-binding step which is often the rate-determining steps (RDSs). In such RDSs (i.e., M(d⁸) + H⁺ → M(d⁶)(H)⁺ or M(d⁸) + CO₂ → M(d⁶)(CO₂⁻)), the filled dₓ² orbital in a square-planar or distorted square pyramidal d⁸ metal ion is generally required with a limited number of exceptions, which has become increasingly clearer based on our recent Experimental/DFT hybrid studies. The d⁸ Pt(II), Ni(II), Co(I), and Rh(II) are good candidates due to their easily accessible characters under ambient or weakly reducing conditions. However, these systems often require further reduction at the metal-ligand or ligand orbitals that are closely located to the reactive metal center, in part due to the lack of driving force to promote the HER or CDR. On the other hand, Fe(0) and Mn(-I) are also known to be useful candidates only when they are coordinated by strongly π-back bonding ligands such as carbon monoxide (CO), as demonstrated by the naturally evolved [FeFe]-hydrogenase enzyme and Mn(bpy)(CO)Br. However, with the lack of CO-like ligands stabilizing such low valent systems, Fe(0) requires relatively strongly reducing conditions and thereby exhibits slow catalysis when driven by the standard photosensitizers like Ru(bpy)₃²⁺ or organic dyes due to the insufficient driving forces available for the reactive intermediate formation step. (refer to next page for full abstract)

Biography
Ken Sakai grew up in a country side of Japan (Misasa) where he largely enjoyed playing in nature, like catching fish, mountain hiking, and camping. He received his B.S. (1987), M.S. (1989), and Ph.D. (1993) at Waseda University in Tokyo, and became an assistant professor at Seikei University in 1991, an associate professor at Tokyo University of Science in 1999, and then a full professor at Kyushu University in 2004. His interests involve studies leading to improved understanding of various important catalytic reactions together with the development of hybrid materials serving as artificial photosynthetic nano-photoreactors for solar fuel generation.

Date: 19th June 2020, Friday
Time: 1.00 pm to 2.30 pm
Venue: Zoom Platform
Host: Associate Professor Soo Han Sen

For Zoom registration:
Full Abstract

Since the initial discovery in 1987 (J. Coord. Chem. 1988, 18, 169) in the catalytic activity of platinum(II) compounds in hydrogen evolution reaction (HER), continued efforts have been made to gain deeper understanding in the mechanism of molecular catalysis by various transition metal compounds in some important energy related catalytic reactions such as HER, OER (oxygen evolution reaction), and carbon dioxide reduction (CDR). For the reduction side of catalysis (HER and CDR), the manner how we utilize/tune either the electron density or basicity at the filled d orbital exposed at the reaction center plays a key role in promoting the protonation or CO2-binding step which is often the rate-determining steps (RDSs). In such RDSs (i.e., $M(d^8) + H^+ \rightarrow M(d^9)(H^+) or M(d^9) + CO_2 \rightarrow M(d^8)(CO_2^-$)), the filled d5 orbital in a square-planar or distorted square pyramidal d8 metal ion is generally required with a limited number of exceptions, which has become increasingly clearer based on our recent Experimental/DFT hybrid studies. The d6 Pt(II), Ni(II), Co(II), and Rh(II) are good candidates due to their easily accessible characters under ambient or weakly reducing conditions. However, these systems often require further reduction at the metal-ligand or ligand orbitals that are closely located to the reactive metal center, in part due to the lack of driving force to promote the HER or CDR. On the other hand, Fe(0) and Mn(-I) are also known to be useful candidates only when they are coordinated by strongly π-back bonding ligands such as carbon monoxide (CO), as demonstrated by the naturally evolved [FeFe]-hydrogenase enzyme and Mn(bpy)(CO)Br. However, with the lack of CO-like ligands stabilizing such low valent systems, Fe(0) requires relatively strongly reducing conditions and thereby exhibits slow catalysis even when driven by the standard photosensitizers like Ru(bpy)$_2$ or organic dyes due to the insufficient driving forces available for the reactive intermediate formation steps.

The RDSs are often classified into metal- and ligand-based proton-coupled electron transfer (PCET) for HER and OER, while the RDSs for CDR may be those coupled to CO2-binding step instead of either protonation or deprotonation. Our recent study on the Co-NHC catalysts clearly indicates that the strongly donating NHC permits the catalyst to take the metal-centered PCET pathway to evolve a hydride intermediate, which has also been supported by our DFT results. The CO2 binding to Co(I)(porphyrin-•) rather than Co(I)(porphyrin) is largely favored due to the higher electron density at the metal center due to the additional negative charge dispersed over the porphyrin. The hydride formation in the Pt(II)-catalyzed HER undergoes via formation of a metal-metal d8-d8 association in a stacked dimer in solution to accelerate the RDS yielding a hydridodiplatinum(II,III) intermediate; Pt(II)$_2$ + H$^+$ + e$^-$ \rightarrow Pt(III)Pt(II)(II). One of our recent finding involves the quartet d9 Fe(I) species which triggers the CO2 binding by two d5 orbitals, where one is a filled orbital and the other is a half filled (singly occupied MO). These systems will be discussed in the paper.

As for the OER, due to the wide range of higher valence oxidation levels available for Mn, Fe, and Ru, they are known to effectively catalyze OER by mainly relying on the metal-centered redox processes in affording the electron deficient Oxygen center required to promote the O-O coupling. For Mn, Fe, and Ru, the RDSs can be driven by steep energy barriers (H2O\rightarrowH$^+$ + e$^-$ + H$_2$O, 2.7-3.5 eV) without using any ligand-based hole charging processes. In contrast with these metals with lower nuclear charge due to lower atomic numbers, the single-site Co or Cu porphyrins or phthalocyanines, adopted in our recent studies, can only make access to d6 Mn(IV), d8 Cu(III), respectively, as the highest metal oxidation levels. However, these levels are not purely metal-based and must be defined as ‘formal Co(IV) and Cu(III), respectively’. Therefore, these must largely rely on the metal-centered redox processes in affording the electron deficient Oxygen center required to promote the O-O coupling considered as the RDS.

For the HER and CDR, the manner how we utilize/tune either the electron density or basicity at the filled d orbital exposed at the reaction center plays a key role in promoting the protonation or CO2-binding step which is often the rate-determining steps (RDSs). In such RDSs (i.e., $M(d^9) + H^+ \rightarrow M(d^9)(H^+) or M(d^9) + CO_2 \rightarrow M(d^8)(CO_2^-$)), the filled d5 orbital in a square-planar or distorted square pyramidal d8 metal ion is generally required with a limited number of exceptions, which has become increasingly clearer based on our recent Experimental/DFT hybrid studies. The d6 Pt(II), Ni(II), Co(II), and Rh(II) are good candidates due to their easily accessible characters under ambient or weakly reducing conditions. However, these systems often require further reduction at the metal-ligand or ligand orbitals that are closely located to the reactive metal center, in part due to the lack of driving force to promote the HER or CDR. On the other hand, Fe(0) and Mn(-I) are also known to be useful candidates only when they are coordinated by strongly π-back bonding ligands such as carbon monoxide (CO), as demonstrated by the naturally evolved [FeFe]-hydrogenase enzyme and Mn(bpy)(CO)Br. However, with the lack of CO-like ligands stabilizing such low valent systems, Fe(0) requires relatively strongly reducing conditions and thereby exhibits slow catalysis even when driven by the standard photosensitizers like Ru(bpy)$_2$ or organic dyes due to the insufficient driving forces available for the reactive intermediate formation steps.

Relevant Publications: